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Abstract The Athabasca Oil Sands are located within the

Western Canadian Sedimentary Basin, which covers over

140,200 km2 of land in Alberta, Canada. The oil sands

provide a unique environment for bacteria as a result of the

stressors of low water availability and high hydrocarbon

concentrations. Understanding the mechanisms bacteria

use to tolerate these stresses may aid in our understanding

of how hydrocarbon degradation has occurred over geo-

logical time, and how these processes and related tolerance

mechanisms may be used in biotechnology applications

such as microbial enhanced oil recovery (MEOR). The

majority of research has focused on microbiology pro-

cesses in oil reservoirs and oilfields; as such there is a

paucity of information specific to oil sands. By studying

microbial processes in oil sands there is the potential to use

microbes in MEOR applications. This article reviews the

microbiology of the Athabasca Oil Sands and the mecha-

nisms bacteria use to tolerate low water and high hydro-

carbon availability in oil reservoirs and oilfields, and

potential applications in MEOR.
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Introduction

Environmental challenge

Over the past 100 years, the Earth’s global mean temper-

ature has increased by about 0.6�C [121]. Current scientific

consensus attributes the Earth’s rising temperatures to an

increased abundance of atmospheric greenhouse gases

(GHGs) [47]. A point of concern and debate over the past

20 years has been the projected increase in emissions

through rapid development of Canada’s oil sands [30],

which is also a contributor to GHG emissions in Canada

[75].

The oil sands environment

The Athabasca Oil Sands in Alberta, Canada are comprised

of a sand, clay, water, and bitumen mixture. Bitumen is a

sticky, tar-like form of crude oil. It is viscous and does not

flow until diluted or heated (Table 1). Mineral sand grains

represent about 82% of the bulk composition of oil sands,

with water being about 2% [110]. Quartz comprises 95% of

the mineral grains, with the remaining being 2–3% feldspar

grains, 2–3% mica flakes and clay [78]. The highest grade

of oil sands has 18% (by weight) bitumen and 2% (by

weight) water [78]. Rich oil sands have greater than 10%

(by weight) bitumen, while moderate oil sands have 6–10%

(by weight), and lean oil sands have less than 6% (by

weight). The depth of the oil sands vary from 0 to about

500 m [137].

Water present in the Athabasca bitumen contains little to

no dissolved oxygen [5] because it has no contact with the

atmosphere or surface water. Expectedly, bacteria indige-

nous to oil sands and reservoirs are anaerobic [5]. Water

occupies 10% of the pore space between mineral grains,
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which results in a water-stressed environment for native

microorganisms [110]. Microorganisms live at the oil–

water interface on mineral surfaces [59]. Microbial adhe-

sion to the oil–water interface is an important parameter in

biodegradation of hydrocarbons to enhance uptake and

metabolism of compounds with low aqueous solubility [1].

Bitumen provides carbon and energy for microbial growth

and increases microbial adherence. The hydrophobic sur-

face of the bitumen substrate appears to present no obstacle

to bacterial adhesion. Bacteria use a glycocalyx for adhe-

sion to the hydrophobic subsurface of bitumen; and bac-

teria within a few micrometers of the bitumen surface may

also adhere via hydrophobic interactions [129].

The bulk oil sands material is an emulsion of quartz sand

grains, hydrocarbons, and water. However, the location of

the water on a grain-scale level has been the subject of dis-

cussion. The primary viewpoint is that the Athabasca Oil

Sands are water wet, meaning water is present in a thin layer

surrounding the sand grains [20, 23, 78, 110]. Conversely,

the Athabasca Oil Sands have been postulated to be oil wet,

meaning oil surrounds the sand grains and water exists as an

emulsion within bitumen [136]. However, the ability to use

the hot water extraction process provides evidence for the

Athabasca Oil Sands being water wet, as the hot water

extraction process will not work on oil-wet sands [78]. The

water film surrounding the grains facilitates the separation of

oil from the sand using a hot water extraction process. Since

the oil is not in direct contact with the sand grains it is easier

to liberate the oil. During the hot water extraction process the

mined oil sands are agitated with water causing a separation

of oil from the sand and water. The stability of the water film

around sand grains has been postulated to be stabilized by pH

neutral or alkaline conditions [23]. Interestingly, a sample

from the Athabasca Oil Sands had a pH of 9 [91].

The origin of oil sands

Oil sands are created through the microbial biodegradation

of light oils over millions of years, resulting in a decline of

oil quality through increasing viscosity, sulphur, resin, as-

phaltenes, and metal content [137]. The pathways of bio-

degradation have only recently become understood, as

scientists are able to isolate and identify microbial com-

munities and their biodegradation metabolites. As biodeg-

radation occurs the removal of linear n-alkanes occurs at a

greater rate than pristane or phytane removal [8, 41]. The

number of aromatic rings increases resistance to biodeg-

radation [41]. The isolation of anaerobic hydrocarbon-

degrading bacteria in the 1990s started to shift the scientific

consensus away from aerobic pathways to anaerobic,

which was further validated when metabolites character-

istic of anaerobic hydrocarbon degradation were detected

in oil, core, and drill cutting samples from biodegraded

reservoirs [5].

Hydrocarbon degradation does not occur uniformly

within oil deposits. A number of biodegraded reservoirs

have a gradient whereby the least biodegraded oil is at the

top of the oil column and the oil–water transition zone [40,

44, 45, 62]. Electron donors come from the oil column,

while nutrients and electron acceptors are provided from

the surrounding water underneath the lowest part of the

column [40]. The breadth of the water and the availability

of nutrients impact the rates of biodegradation observed in

a reservoir [3, 45, 61, 62].

The level of degradation observed is impacted by the

historical temperature range. When deposits are exposed to

temperatures above 80�C, a process called paleo-pastur-

ization occurs, resulting in the inactivation or death of the

hydrocarbon-degrading bacteria [3]. This process explains

why some oil deposits with ideal degradation conditions

are minimally or not degraded at all [125].

Hydrocarbon degradation is anaerobic near surface

sediments and has been linked to nitrate reduction, iron

reduction, sulphate reduction, and methanogenesis [124].

As a result of the detection of similar metabolites in low-

oxygen petroleum reservoirs it has been postulated that

some or all of these processes could occur under anaerobic

conditions [41]. Nitrate has been ruled out as a primary

Table 1 Composition of the Athabasca oil sands

Constituent Value Reference

Bitumen

Asphaltenes 15.59 wt% [133]

Maltene 84.42 wt%

Saturated aromatics 67.97 wt%

Resin 16.44 wt%

Elements

C 82.84 wt%

H 10.40 wt%

S 4.78 wt%

N 1.63 wt%

Ni 68.50 ppm

V 174 ppm

Fe 16.80 ppm

Water 2 wt% [110]

Temperature 10�C [137]

Density 8–12� (API)a

Viscosity 2 9 106 cP

pH 9 [91]

Porosity 25–35% [78]

Grain size 62.5–250 lm

Deposit depth 0–500 m (27 m avg.)

a American Petroleum Institute gravity (a measure of how heavy or

light a petroleum liquid is compared to water)
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oxidant in hydrocarbon degradation because it is uncom-

monly detected in petroleum reservoirs, and is likely con-

sumed in near-surface sediments before reaching oil

deposits [41]. Oxidized iron is commonly found in oil

deposits, but like nitrate it has no major importance in the

degradation of hydrocarbons, as it is likely oxidized during

diagenesis [95]. Sulphate reduction and methanogenesis

are the primary processes responsible for hydrocarbon

oxidation.

This review will provide a microbiology perspective of

the Athabasca Oil Sands, with an emphasis on microbial

processes, and methods used to detect microbial species.

Biosurfactant production by microbes under low water

availability and the potential of biosurfactants in microbial

enhanced oil recovery (MEOR) will also be examined.

Microbial communities in the Athabasca Oil Sands

The Athabasca Oil Sands contain a variety of microor-

ganisms including methanogens, sulphate-reducing bacte-

ria (SRB), fermentative microorganisms, acetogens,

nitrate-reducing bacteria (NRB), and iron-reducing bacteria

(Table 2). Microbial metabolism of organic compounds

within the oil sands results in the production of methane

(CH4), hydrogen sulphide (H2S), and carbon dioxide

(CO2). Understanding key microbial processes in oil sands

such as methanogenesis and sulphate reduction is useful for

oil sand tailing pond management strategies. Identification

of community composition can allow for prediction and

manipulation of metabolic interactions to inhibit or

enhance process outcomes. Several factors influence spe-

cies dominance within oil sand tailings including carbon

source, temperature, redox potential, availability of termi-

nal electron acceptors, depletion of trace nutrients, and

accumulation of toxic compounds (e.g. naphthenic acids)

[83].

Methanogens and SRB bacteria compete for electron

donors [126] allowing methane production in marine sed-

iments to occur only after sulphate has been depleted from

pore water [72]. This is shown in the following reactions

[97]. Sulphate reduction

4H2 þ SO2�
4 þ Hþ ! HS� þ 4H2O DG� ¼ �152 kJ

Methanogenesis

4H2 þ HCO�2 þ Hþ ! CH4 þ 3H2O DG� ¼ �135 kJ

Sulphate reduction

CH3COO� þ SO2�
4 ! HS� þ 2HCO�3 DG� ¼ �47 kJ

Methanogenesis

CH3COO� þ H2O! CH4 þ HCO�3 DG� ¼ �31 kJ

Utilization of H2 or acetate by SRB generates more energy

than methanogens using these same compounds. Accordingly,

SRB obtain more energy per unit of substrate than

methanogens, and in environments abundant in sulphate,

they outcompete methanogens for available substrates [32].

Methanogens

Methanogenic bacteria and archaea are strict anaerobes

with various metabolic pathways, utilizing H2, CO2, ace-

tate, methylamines, and dimethylsulphides in the oil sands

to produce methane [134]. Methane accounts for 60–80%

of gas flux across the surface of the Athabasca Oil Sands

[43]. Enumeration of methanogens has found 104–105 most

probable number (MPN)/ml within the fine tailings of oil

sand waste settling basins [83]. Samples obtained from the

Mildred Lake Settling Basin (MLSB) contained NRB and

SRB, while methanogens were below detection limits

(\101 MPN/ml) [33, 107]. Enumeration of samples from

the MLSB in 1996 showed the presence of methanogens

[106], and 3 years later 40–60% of the 12-km2 MLSB

water surface area was considered an active bubbling zone,

with bubbles of gas observed. The estimated methane flux

emitted from the MLSB is 43 million l/day [43].

Samples from two mature fine tailing deposits in the

Athabasca Oil Sands (MLSB and West In-Pit) were analysed

using clone libraries of amplified 16S rRNA, and were shown

to contain prokaryotes responsible for methane production

[83]. The closest matching archaeal sequences were metha-

nogens, and 87% of clones were associated with Methan-

osaeta spp. Bacteria clone sequences were diverse, with

about 55% related to Proteobacteria, including nitrate-, iron-

, and sulphate-reducing bacteria (Thauera, Rhodoferax, and

Desulfatibacillum). The effects of methanogens in oil sands

extend beyond their biodegradation and methane production

ability. Methanogens can slow sedimentation and densifi-

cation in tailing ponds, hindering water recycling and

increasing the amount of fresh water required for bitumen

extraction [17, 31]. Through degradation of residual oil,

methanogens can re-pressurize a petroleum reservoir

allowing for greater recovery of residual oil [28]. Gypsum

(CaSO4�2H2O) is sometimes added to mature fine tailing

ponds, where cation exchange between Ca2? and Na? in

clays increases slurry viscosity allowing for better water

recycling [21]. In addition, sulphate from the gypsum can

stimulate SRB by providing a sulphate substrate and there-

fore inhibit methanogenesis [32].

Sulphate-reducing bacteria

SRB were the first microorganisms recovered from oilfields

[14]. These strict anaerobes utilize H2, simple organic

acids, or alcohols as electron donors for sulphate reduction.
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SRB were isolated from MLSB in the order of 103–

104 MPN/ml [83], which is comparable to a 1985 study

with sample detections of 104 MPN/ml SRB [33].

Although addition of sulphate to mature fine tailing ponds

inhibits methanogenesis [97], it is not feasible in the MLSB

because of insufficient mixing of sulphate and the large

volume of the tailing ponds [43]. Oil sand tailings are left

over from the extraction process and are stored in large

ponds. Over time materials settle and separate producing a

middle layer, the mature fine tailings, which is comprised

of 70% water and 30% fine silt.

Samples from Canadian oilfields were probed for SRB

by reverse sample genome probing of the microbial

community. In reverse sample genome probing, labelled

environmental DNA is hybridized to genomes of target

microorganisms. This technique allows the total DNA from

a community to be quantitatively analysed in one step. Of

34 microorganisms detected, 10 were unique to the fresh

water, 18 were unique to the saline water, and 6 microor-

ganisms were cultured from both oilfield environments

[119]. Aside from their preventative role in inhibiting

methanogenesis, SRB have many detrimental effects on oil

sand tailing ponds, such as accelerated corrosion, and

undesirable production of H2S. Additionally, thermophilic

SRB are responsible for reservoir souring, which results

from the production of H2S, and occurs during water

Table 2 Species and functional groups found in Athabasca oil sands

Species/functional group Sample taken from References

Pseudomonas aeruginosa ATS-14 Soil from the Athabasca Oil Sands [64]

Mycobacterium rhodochrous 7E1C Bituminous hydrocarbons collected from the river sediment interface from the

Athabasca and Steepbank rivers in the Athabasca Oil Sands Region

[129]

Pseudomonas spp. SB1SP, A4B, and A4F

Rhodotorula spp. A4D2

Mycobacterium spp. A55 and MK15A

Nocardia spp. A4C

Xanthomas spp. A4E1

Gram-negative rod A41

Methanogens Mature fine tailings waste from the Mildred Lake Settling Basin, the Base Mine

Lake and Demonstration Pond, the Athabasca Oil Sands

[43]

Sulphate-reducing bacteria

Thiosulphate-reducing bacteria

Arthrobacter oxydans The Athabasca Oil Sands [52]

Arthrobacter spp. CF46 (ASP243243)

Denitirifying bacteria Mature fine tailings from Mildred Lake Settling Basin in the Athabasca Oil Sands [32]

Iron(III)-reducing bacteria

Sulphate-reducing bacteria

Methanogens

Methanomethylovorans hollandica Oil sands tailings and tailings sediments from the Athabasca Oil Sands [17]

Archaeal Methanosaeta spp. Mature fine tailings from Mildred Lake Settling Basin and West In-Pit in the

Athabasca Oil Sands

[83]

Archaeal Methanomethylovorans spp.

Archaeal Methanocalculus spp.

Acidovorax spp.

Thiobacillus spp.

Thauera spp.

Thiobacillus denitrificans

Rhodoferax ferrireducens

Desulfobacterium spp. Oil sands tailings (tailing pond six) in the Athabasca Oil Sands [93]

Desulfocapsa spp.

Desulfurivibrio spp.

Desulfuromonas spp.

Pelotomaculum spp.

Smithella spp.

Syntrophus spp.
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flooding in secondary oil recovery [68]. SRB reduce sul-

phate in the injection water to sulphide, while oxidizing

degradable organic electron donors present. Since large

volumes of water (10,000 m3/day) are injected, substantial

sulphides are produced [46]. Hydrogen sulphide is a toxic

oil-souring gas, and its production causes contamination of

natural oil, corrosion, and reservoir plugging due to pre-

cipitation of metals [79].

Addition of nitrate is an approach used to control the

accumulation of sulphides. Nitrate injection changes the

microbial community enabling nitrate-reducing sulphide-

oxidizing (NRSOB) bacteria and heterotrophic NRB

(HNRB) to outcomplete SRB [26], because nitrate reduc-

tion to nitrogen or ammonia provides more free energy

than sulphate reduction. HNRB compete with SRB for

degradable organic electrons and nitrate production has

also been shown to inhibit SRB metabolism [46, 118].

Nitrate-mediated sulphide control is most effective when

sulphide oxidation by NRSOB is complemented by pro-

cesses that inhibit sulphidogenesis [48].

Microbial detection in oil sites

The study of the function and dynamics of environmental

oil site ecosystems requires the characterization of micro-

bial communities. The study of microbial populations in

these environments allows for the evaluation of long-term

effects of petroleum pollution, development of waste

remediation approaches, tracking the enrichment of

microorganisms during remediation, control of deleterious

microbial activities during petroleum production, and

measurement of microbial interactions as affected by

extraction processes [115]. Culture-dependent and -inde-

pendent approaches are used to characterize microbial

communities.

Culture-dependent approaches

Culture-dependent approaches have been used to study

environmental microorganisms. Isolation can be on the

basis of morphological, metabolic, or physiological char-

acteristics and common techniques include growth on

selective medium, MPN approaches, and the Biolog sys-

tem. Plate counts and MPN are useful for enumerating

specific culturable strains, while Biolog plates can distin-

guish changes in the metabolic activity profile of a

microbial community [36].

Growth media commonly used for isolation of envi-

ronmental microorganisms (including those in oil reser-

voirs) often contain more carbon and nitrogen than the

environment from which the samples were taken [134]. To

evaluate the microbial diversity in water samples from the

North Sea Ekofisk oilfield, media were enriched with

metabolites corresponding to metabolic requirements,

allowing for bacterial fermenters, nitrogen reducers, acet-

ogens, methanogens, and sulphate reducers to be isolated

from samples [51]. In a growth medium with a sulphide

electron donor and a nitrate as an electron acceptor, a

Campylobacter sp. was shown to be present in different

Western Canadian oilfields. This sulphide oxidizer may

play an important role in the oilfield sulphur cycle by

reoxidizing the sulphides formed by microbial reduction of

sulphate or sulphur, and contributing to reduced oil souring

[118]. To analyse the microbial community in the Pelican

Lake Oil Field (Western Canadian Sedimentary Basin), a

culturing approach included media amended with various

carbon compounds to cultivate aerobic and anaerobic

bacteria [35].

Culture methods for enumeration based on the MPN

technique have been used in Alberta’s oil sands [43, 83,

128]. The oil industry typically uses the MPN method to

enumerate bacteria in oil reservoirs despite the time and

labour required [112]. The MPN method has been used to

enumerate methanogens and SRB in fine tailing ponds [43].

In a study of several cultivation-dependent and cultivation-

independent methods to assess potential microbial activities

in produced waters from Alberta oilfields, MPN analysis

detected NRSOB and HNRB at numbers too low to be

detected by fluorescent in situ hybridization (FISH) or

denaturing gradient gel electrophoresis (DGGE) [60].

The Biolog system generates a fingerprint of the overall

metabolic capabilities of the culturable microbial commu-

nity by testing different molecules as sole carbon sources

[39]. The Biolog system has been used to compare microbial

community structures in wetlands of the Athabasca Oil

Sands [39]. It has been estimated that only 0.1–5% of

microorganisms can be cultured from environmental

samples or detected using culture-based methods. Some

microorganisms are considered non-culturable and a rep-

resentative community profile is not attainable [51, 65].

Culturing also does not capture changes in the microbial

community that may occur. Despite microorganisms being

present in oil sands and other oil reservoirs for millions of

years, our understanding of phylogenetic diversity, meta-

bolic activity, ecological roles, and community dynamics

in these environments is limited [134].

Culture-independent techniques

Molecular techniques have been used to assess the micro-

bial diversity of environmental communities (Table 3).

Only a fraction of microorganisms can be cultured in the

laboratory and molecular techniques have allowed for the

discovery of new phylogenetic groups of microorganisms

[71].
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Reverse sample genome probing was used for the

detection and quantification of sulphate-reducing microor-

ganisms in oil reservoir samples [119, 120]. 16S rRNA

gene-based surveys provide an overall view of the com-

position of communities in a specific ecosystem, regardless

of the metabolic abilities of the community members [134].

Studies of production water from low temperature oil res-

ervoirs in Western Canada have featured 16S rRNA and

culture-based enrichment techniques. In one study, 36 16S

rRNA gene clones were analysed and groups of sulphate-

Table 3 Molecular methods for detection of bacteria and archaea in environmental oil samples

Sample type Detection method Extraction method Isolated microorganisms References

Oilfields, India qPCR assay Extraction from isolated

pure cultures

Sulphate-reducing bacteria [4]

DGGE

Oilfields, India PCR amplification of

16S rRNA

Extraction from isolated

pure cultures

Sulphate-reducing, thiosulphate-

reducing bacteria

[4]

North Sea oilfield PCR amplification of

16S rRNA

Custom extraction from

environmental samples

Thermophilic and fermentative

bacteria, thermophilic

methanogenic archaea

[24]

Wetlands of Athabasca Oil Sands,

Alberta, Canada

FAME Custom extraction from

environmental samples

NE [39]

DGGE

Coleville oilfield, Saskatchewan,

Canada.

Dot blot cross

hydridization

Extraction from isolated

pure cultures

Sulphate-reducing and nitrate-

reducing bacteria

[46]

PCR amplification of

16S rRNA

Oil reservoir water, Teikoku Oil,

Niigata, Japan

PCR amplification of

16S rRNA

Extraction from isolated

pure cultures

Psychrotrophic bacteria [52]

Ekofisk oil reservoir, Norwegian

sector of the North Sea

PCR amplification of

16S rRNA

Custom extraction from

environmental samples

Thermophilic bacteria [51]

DGGE

Oilfields, Alberta, Canada, PCR Commercial extraction kit Nitrate-reducing, sulphate-

reducing bacteria

[60]

DGGE

FISH

Long-term water-flooded petroleum

reservoir, Huabei Oilfield, China

PCR amplification of

16S rRNA

Custom extraction from

environmental samples

Thermophilic bacteria [65]

Oil-containing thermal spring in

Uzon volcano caldera,

Kamchatka Peninsula

Parallel pyrosequencing

of 16S rRNA gene

fragments

NE Thermophilic bacteria [71]

Oil sands tailings, Alberta, Canada PCR amplification of

16S rRNA

Commercial extraction kit Methanogenic bacteria [83]

Production water Schrader Bluff

petroleum field, Alaska

PCR amplification of

16S rRNA

Custom extraction from

environmental samples

NE [84]

Fosmid clone libraries

Athabasca Oil Sands tailing pond,

Alberta, Canada

Pyrosequencing of 16S

rDNA

Commercial extraction kit

and skim milk powder

Syntrophs, sulphate- and sulphur-

reducing bacteria, and

methanogens

[93]

Berkel oilfield, Netherlands PCR amplification of

16S rRNA

Commercial extraction kit NE [114]

DGGE

Oilfield, Alberta, Canada Reverse sample genome

probing

Extraction from isolated

pure cultures

20 different sulphate-reducing

bacteria

[119]

Southern blotting

Oilfield, Alberta, Canada PCR amplification of

16S rRNA

Extraction from isolated

pure cultures

Sulphate-reducing, fermentative,

and sulphide-reducing bacteria

[118]

Production waters of oil wells,

Japan

PCR amplification of

16S rRNA

Method for preparing DNA

from crude oils using

isooctane

Thermophilic, mesophilic bacteria [131]

qPCR quantitative polymerase chain reaction, DGGE denaturing gradient gel electrophoresis, FAME phospholipid fatty acid analysis, FISH
fluorescent in situ hybridization, NE not evaluated in study

1766 J Ind Microbiol Biotechnol (2011) 38:1761–1775

123



reducing, sulphide-reducing, and fermentative bacteria

were identified [118]. Bacterial and archaeal phylotypes

found in a production water sample from the mesothermic

Schrader Bluff petroleum field in Alaska were found by

two independent molecular methods. PCR and fosmid

clone libraries of the same source DNA allowed for a more

thorough account of the microbial diversity within the

population [84]. Dot blot hydridization with functional

gene probes and 16S rRNA gene sequence analysis have

been applied to identify fermentative, acetogenic, anaero-

bic, sulphate oxidizers, and SRB populations (members of

Desulfovibrionaceae and Desulfobacteriaceae) inhabiting

a low temperature, water-flooded well in Western Canada

[118, 119].

Molecular methods require efficient and high purity

DNA extraction. Numerous extraction procedures have

been developed to isolate bacteria from environmental oil

samples. A method of extracting DNA from crude oil using

high concentrations of 2,2,4-trimethylpentane (isooctane)

as a DNA precipitator was developed [132] and used with

PCR of 16S rRNA to identify indigenous bacterial and

archaeal microorganisms in oil deposits and wellheads of

Japanese oil wells [131]. Oil sand tailing samples are rich

in clay, and strongly absorb DNA making extraction dif-

ficult. An improved extraction method using skim milk was

developed for soils strongly absorbing DNA [109]. The

skim milk competes with DNA in binding to clay, thereby

aiding in the precipitation of DNA from clays and

increasing extraction efficiency [109].

DGGE can be used to compare microbial diversity in

oil-impacted sites [51], whereas phospholipid fatty acid

analyses are useful as a measure of the general metabolic

potential of the communities [39]. DGGE allows for the

rapid comparison and phylogenetic analysis of microbial

communities, and is now a common technique to study the

ecology and dynamics of bacterial populations in envi-

ronmental samples [122].

Molecular techniques are essential for the study of

microbial population dynamics in oil reservoirs. Certain

populations of microorganisms can impact the quality of

petroleum reservoirs, but cannot be identified through tra-

ditional culturing techniques. A limitation of 16S rRNA

gene sequences is that they do not give any indication of

the metabolic properties of the species, which is the

direction of future research [114]. Metagenomics can be

applied to establish genetic profiles of native communities

and to examine their potential applications in MEOR.

Tolerance to hydrocarbon exposure

Exposure to high concentrations of hydrocarbons causes

stress on bacterial species, which is dealt with by changes

in the lipid bilayer of the cytoplasmic membrane and

related mechanisms. The microbial cytoplasmic membrane

functions as a selective barrier for the uptake of substrates

and excretion of products, and modifications or damage can

impair the survival of cells. Hydrophobic compounds in the

environment interact with microorganisms at the cyto-

plasmic membrane and tend to reside in the acyl chains of

phospholipids in the hydrophobic area between the mem-

brane monolayers. The penetration of hydrocarbons into

cellular membranes is a function of the compound’s octa-

nol–water partition coefficient [115]. Compounds most

stressful for microbial cells have logPoctanol–water values of

1–5 [42]. Hydrophobic compounds partitioning deep into

interior membranes typically have a logPoctanol–water coef-

ficient less than 2 [74].

Petroleum hydrocarbons alter the microbial cytoplas-

mic membrane by influencing membrane fluidity and

protein composition [42, 105]. Hydrocarbons interact with

cells in a non-specific manner but toxicity arises from

lipid–lipid and lipid–protein interactions [117]. Some

dissolved hydrocarbon molecules that come into contact

with the cytoplasmic membrane passively enter the

hydrophilic phase of the bilayer following the solubility-

diffusion mechanism while others flow through transient

channels [115]. In the transient-channel mechanism,

fluctuations in the bilayer lead to the formation of a

transient channel followed by solute diffusion through this

water channel. In the solubility-diffusion mechanism, the

solute enters and leaves the bilayer through short-lived

cavities in the headgroup regions of the bilayer [37, 82].

The changes to cell membranes differ greatly and depend

on the type of hydrocarbon substance interacting with the

membrane.

The presence of polar and/or hydrophobic protein

domains within a lipid bilayer assist in the structural sta-

bility of the membrane [74]. Cells that are highly tolerant

to hydrophobic compounds have been shown to use active

solvent efflux pumps to remove these stressful compounds

from cells [57, 92]. Cytoplasmic membrane alterations and

adaptations may be important for tolerance to hydrophobic

substances, particularly changes in fatty acid composition,

phospholipid headgroups, and protein content [42]. One of

the key processes in the adaptation of some Pseudomonas

strains to organic solvents is the isomerization of cis- into

trans-unsaturated fatty acids. This decreases membrane

fluidity by increasing membrane ordering [42, 49]. These

alterations serve to produce a physical barrier to the

intercalation of hydrocarbons into membranes, thus off-

setting the passive influx of hydrocarbons into the cell [74].

Extreme environments are stressful for microorganisms

and how they adapt and survive in oil sands usually

depends on their capability to grow and divide under low-

water conditions.
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Tolerance to low water availability

Numerous species of bacteria have been shown to survive

prolonged periods of desiccation, usually by slowing

metabolism or through survival mechanisms such as

inhibiting DNA replication, damaged DNA exportation,

multiple genome copies, and efficient DNA repair pro-

cesses [15, 73, 85]. However, since bacterial species found

in oil sands encounter ongoing water stress they may use

additional mechanisms to cope with prolonged low water

availability. The continual water stress inherent in oil sands

poses an interesting problem, considering the view that

water is a necessity for all life, and proposed as necessary

for the beginning of life [86]. How do bacteria survive in

oil sands that harbour only 2% water content by weight?

Because of the low water availability in oil sands, past

studies have sought to identify the location of bacteria within

the oil sand matrix. It has been observed that bacteria tend to

congregate within the oil–water interface, but the exact

mechanisms of their survival in this extreme low-water

environment have not been conclusively identified [7]. The

Athabasca Oil Sands are unique from other oil deposits as

they are water wet, the bulk of which consists of bitumen,

sand, and water, which together form an emulsion [67].

An emulsion is created by two immiscible liquids, such

as water and oil, and an emulsifier [50]. In nature, colloidal

solids such as clay particles may act as emulsifiers by

lowering interfacial tension and facilitating the dispersion

of one liquid in a second liquid [50]. A good emulsifier

provides repulsive forces between dispersed droplets of one

liquid in the other, thereby preventing coalescence and

phase separation of the two liquids [29, 50]. Emulsions

create an increase in the surface area of the oil–water

interface, and just as fine solid particles such as clay and

sand can act as stabilizing agents within the emulsification,

so can hydrophobic bacteria [29, 50]. Both solid colloids

and biotic colloids (bacteria) attach strongly to the oil–

water interface through hydrophobic interactions, which

may give rise to adsorbed layers, resulting in increased

emulsion stability [29, 50].

Bacteria tolerant to low-water stress have been isolated

from oil sands and other extreme environments such as the

Sonoran Desert, the Sahara Desert, and Antarctica [16, 90].

Proposed mechanisms of low-water tolerance have inclu-

ded energetic adjustments, namely the reduction of meta-

bolic activity [7], efficient DNA repair mechanisms [15],

adjustments of cell walls or unique extracellular structures

[101], changes in cell surface hydrophobicity [34], and the

biosynthesis of osmolytes [7] and extracellular biosurfac-

tants that regulate hydraulic potential gradients [94].

Owing to their biosurfactant production, some species

have been utilized for various industrial, cosmetic, and

food processes, and there is increased emphasis on their use

for MEOR projects [103]. Regardless of the many potential

applications of biosurfactants within biotechnology and

industry, an interesting biological aspect of microbial

biosurfactants is how they benefit bacteria, particularly

bacteria under low-water stress.

Researchers have studied the diverse array of biosur-

factants produced microbially, including low molecular

mass glycolipids and high-molecular mass bioemulsifiers

[9, 103]. Biosurfactants act extracellularly, and are amphi-

phathic in nature, thereby stabilizing oil–water emulsions

[9]. The stabilization of oil–water emulsions through bio-

surfactant production results in reduced surface tension and

an increased surface area of water available for microor-

ganisms [103]. Additionally, as many biosurfactants are

stable at high salt concentrations, high temperatures, and

within a wide pH range, it appears their production—as

found in oil sands—could be considered a mechanism used

to deal with low-water stress and high hydrocarbon expo-

sure [101, 102].

Microbial production of exopolysaccharides creates a

protective matrix around soil bacteria, which can hold

several times its weight in water, thereby acting as a buffer

against low soil water and increasing the diffusional ability

of nutrients to bacteria in times of severe water stress [94].

Researchers have observed that the low-water-tolerant

species Pseudomonas aeruginosa could survive on a 99%

triglyceride, 1% water emulsion as a result of lipase pro-

duction, from which they implied that the species might

have a uniquely stable membrane or specific extracellular

structures which may also contribute to the species’ unique

low-water tolerance [101, 102]. The ability of Brevibac-

terium to grow in oil may be influenced by a high lipid

content of the cellular envelope. For example, after 6 days

of growth lipids comprised 32% of the dry weight [100].

An extracellular polyanionic heteropolysaccharide bio-

emulsifier, emulsan from Acinetobacter venetianus, which

was shown to have hydrocarbon substrate specificity and

amphiphathic properties, has also been studied in A. radio-

resistens [9]. Emulsan aids in the formation and stabilization

of oil–water emulsions, which may spatially increase bio-

availability of water and nutrients to microorganisms [9].

Rhodococcus opacus strain PD630 belonging to the

Actinomycetes, known for their presence in arid environ-

ments, has also been studied in response to water stress.

R. opacus strain PD630 had a wide range of responses

at different water levels, including decreased metabolic

activity, synthesis and intracellular accumulation of com-

patible solutes, and the production of CO2 in the absence of

an added carbon source [7]. This indicated that the species

was able to transform hydrocarbons into extracellular

storage lipids. Upon further analysis, R. opacus PD630

regulated its cellular lipid content under low-water stress,

and a matrix of extracellular polymeric substances was
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observed through scanning electron microscopy, sur-

rounding colony surfaces after induced water stress [7].

Previous studies have also shown extracellular polymer

(or biosurfactant) production in other bacterial species,

including Pseudomonas aeruginosa strains, known for their

production of rhamnolipids [27]. The first stage of biosur-

factant production in P. aeruginosa UG2 and PG201 was

correlated with an increase in cell surface hydrophobicity,

which may facilitate cell adhesion in the oil–water interface

and therefore substrate access [27]. Additionally, a recent

study examining three strains of P. aeruginosa found that

increases in cell surface hydrophobicity occurred initially

when grown on diesel fuel, glucose, and dodecane and

hecadecane mixtures, with a decline in cell surface hydro-

phobicity after the initial increase [34]. These increases were

substrate-dependent, and the presence of rhamnolipids was a

key factor in the ability of P. aeruginosa to degrade larger

amounts of different hydrocarbons [34].

Bacterial species inhabiting the Athabasca Oil Sands

have evolved to grow and divide under extremes, including

continual low-water stress. One mechanism to combat this

stress that seems to have been adopted by some species is

the production of extracellular surfactants.

Overview of enhanced oil recovery from conventional

oil reservoirs

Enhanced oil recovery (EOR) is used to extract residual oil

from wells left unrecovered from primary and secondary

extraction methods. For a better understanding of the

challenges faced during EOR a brief explanation of the first

two stages of conventional oil recovery methods is neces-

sary. Primary extraction methods involve drilling an oil

well into an oil reservoir. Initially natural pressures drive

the oil up to the surface; after the pressure dissipates,

pumps are used. Secondary extraction focuses on improv-

ing the flow of oil to the wellhead by injecting water

(waterflooding) throughout the reservoir. Once the ratio of

water to oil pumped out of the well becomes too great, it is

too costly to separate the water from the oil and secondary

extraction is discontinued. However, more than two-thirds

of the oil in the reservoir is left unrecovered after primary

and secondary extraction [19, 54]. Residual oil is difficult

to recover because it is often located in areas inaccessible

to fluids used for flooding, or the oil is adhered to sand or

carbonate particles in the reservoir [99]. High oil viscosity

can also impede recovery.

Conventional EOR methods (also known as tertiary

extraction) make use of chemicals (solvents, polymers,

surfactants), injected gases (CO2, N2, flue gas), and thermal

methods (steam flood, hot water, combustion) to extract

remaining oil from stagnant reservoirs [99]. Similarly,

MEOR utilizes solvents, gases, organic acids, polymers,

biofilms, and biosurfactants produced by microbes to aid in

the extraction of unrecovered oil [54–56, 63, 134]

(Table 4).

Both conventional and MEOR methods focus on

improving the mobility of oil through decreasing oil vis-

cosity, dissolution of carbonates in the reservoir, physically

displacing oil, and plugging of highly permeable areas in

the reservoir to increase the sweep efficiency of water-

flooding. MEOR is more economical [77] and environ-

mentally considerate [63] compared to conventional EOR.

Bacteria used for MEOR are inexpensive and are easy to

maintain, whereas the solvents, polymers, and surfactants

derived from petroleum sources are dependent on the

increasing cost of crude oil [134]. Solvents produced by

bacteria do not rely on the cost of crude oil, and represent a

cost-effective alternative. Additionally, using solvents,

acids, and biosurfactants produced by bacteria instead of

petrochemicals or thermal recovery methods reduces the

total input of energy used for extraction. Furthermore,

bacterial activity in the oil well should become more

effective as the microbes multiply and grow, whereas the

effects of chemical additives will diminish over time [63].

MEOR is environmentally friendly as microbial products

are biodegradable and have low toxicity.

MEOR and oil sands

Oil sand extraction methods decrease the viscosity of the

bitumen through steam, chemical solvents, or hot air

injection. There have been few studies on using MEOR for

oil extraction from oil sands. However, MEOR still has

potential for use in oil recovery from oil sands, especially

processes focusing on decreasing the viscosity of oil and

reducing the interfacial tension between oil and water

interfaces. Of particular interest are MEOR strategies

involving biosurfactants. Biosurfactant-producing bacteria

are likely candidates for in situ MEOR from oil sands since

they are equipped to cope with the low water availability

and high hydrocarbon concentrations, such as those found

in oil sands. To our knowledge little if any research on

using biosurfactant-producing microbes in oil sands has

been done yet. However, this does not invalidate the

potential application of biosurfactants, or of MEOR in

general to oil sands, as increasing concern over the amount

of GHG emissions from conventional methods of oil sand

recovery necessitates exploration of more environmentally

friendly recovery methods.

Biosurfactants in MEOR

Biosurfactants have an important role in MEOR and have

been reviewed [54, 63, 99]. Biosurfactants can be used in
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MEOR for conventional oil reservoirs in three different

ways. They can be produced ex situ in fermentors and then

injected into the well [98]. Biosurfactants can also be

produced in situ by exogenous microorganisms injected

into the well [135]. Also, the production of biosurfactants

by indigenous biosurfactant-producing bacteria can be

stimulated by injection of nutrients into the well [13, 113,

123, 130] (Table 5).

Concluding comments

The Athabasca Oil Sands are a product of millions of years

of biodegradation processes which continue today. Micro-

bial communities, including sulphate-reducing bacteria,

fermenters, methanogens, acetogens, nitrate-reducing

bacteria, and iron-reducing bacteria, interact in the oil

sands environment and metabolize crude oil compounds.

The mechanisms bacteria use to tolerate the low-water and

hydrocarbon stresses inherent in the oil sands matrix vary

between species and functional groups. Some of these

mechanisms, such as the production of biosurfactants,

influence the oil sands environment and have applications

in MEOR. Bacterial communities can displace oil from

mineral surfaces, and reduce oil viscosity through the

production of biosurfactants, solvents, gases, and acids.

Some research has been completed regarding bacterial

species specific to the Athabasca Oil Sands, and the

potential use of microbial biosurfactants in MEOR appli-

cations. As molecular methods progress within the fields of

transcriptomics, proteomics, genomics, and metabolomics,

these advances could be applied to the study of indigenous

Table 4 Biotechnological

application of microbes in

MEOR

Biosurfactants produced by microbes

Applications: lower interfacial tension between oil and water, reduce oil viscosity

Microbe Biosurfactants produced References

Acinetobacter sp. Emulsan [9, 22]

Bacillus sp. Lichenysin [66, 76]

Surfactin [38, 123]

Lipopolysaccharide [58]

Pantoea sp. Glycolipid [116]

Pseudomonas sp. Rhamnolipid [80, 87, 127]

Glycolipid [18]

Rhodococcus sp. Trehalose lipids [12, 111]

Biopolymer and biofilm produced by microbes

Applications: selective plugging of oil-depleted zones, increases sweep efficiency of water flooding

Microbe Biopolymer or biofilm produced References

Xanthomonous sp. Xanthan gum [53]

Alcaligeness sp. Curdlan [10]

Cytophaga, Arcobacter, and Rhizobium sp. Biofilm formation [96]

Acids produced by microbes

Applications: carbonate dissolution in rocks by acids enhances oil migration by increasing porosity and

permeability

Microbe Acids References

Clostridium sp. Acetate and butyrate [55, 56, 134]

Bacillus sp. Acetate, formate, lactate [134]

Solvent produced by microbes

Application: dissolution of rocks releases oil from porous matrix, also lowers oil viscosity

Microbe Solvents References

Clostridium sp. Acetone, butanol, propan-2-diol [99]

Zymomonas sp. Acetone, butanol, propan-2-diol [99]

Klebsiella sp. Acetone, butanol, propan-2-diol [99]

Gases produced by microbes

Application: increased pressure of oil, swelling of oil, and reduced viscosity of oil

Microbe Gases References

Clostridium sp. CO2 and H2 [134]

Bacillus sp. CO2 [6]
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bacterial populations within oil sands to investigate their

potential in new biotechnological applications.
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